Abstract

<p style='text-indent:20px;'>We present an application of topological data analysis (TDA) to discrete optimization problems, which we show can improve the performance of the 2-opt local search method for the traveling salesman problem by simply applying standard Vietoris-Rips construction to a data set of trials. We then construct a simplicial complex which is specialized for this sort of simulated data set, determined by a stochastic matrix with a steady state vector <inline-formula><tex-math id="M1">\begin{document}$ (P,\pi) $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M2">\begin{document}$ P $\end{document}</tex-math></inline-formula> is induced from a random walk on a finite metric space, this complex exhibits similarities with standard constructions such as Vietoris-Rips on the data set, but is not sensitive to outliers, as sparsity is a natural feature of the construction. We interpret the persistent homology groups in several examples coming from random walks and discrete optimization, and illustrate how higher dimensional Betti numbers can be used to classify connected components, i.e. zero dimensional features in higher dimensions.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call