Abstract
This paper investigates the use of Triple Modular Redundancy (TMR) in hardware accelerators designs described in C programming language and synthesized by High Level Synthesis (HLS). A setup composed of a soft-core processor and a matrix multiplication design protected by TMR and embedded into an SRAM-based FPGA was analyzed under accumulated bit-flips in its configuration memory bits. Different configurations using single and multiple input and output workload data streams were tested. Results show that by using a coarse grain TMR with triplicated inputs, voters, and outputs, it is possible to reach 95% of reliability by accumulating up to 61 bit-flips and 99% of reliability by accumulating up to 17 bit-flips in the configuration memory bits. These numbers imply in a Mean Time Between Failure (MTBF) of the coarse grain TMR at ground level from 50% to 70% higher than the MTBF of the unhardened version for the same reliability confidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.