Abstract
BackgroundApplication of time series modeling to predict reports related to maltreatment of vulnerable adults can be helpful for efficient early planning and resource allocation to handle a high volume of investigations. The goal of this study is to apply: (1) autoregressive integrated moving average (ARIMA) time series modeling to fit and forecast monthly maltreatment reports accepted for assessment reported to adult protective services (APS), and (2) interrupted time series analysis to test whether the implementation of intake hubs have a significant impact in the number of maltreatment reports after the implementation period.MethodsA time series analysis on monthly APS intake reports was conducted using administrative data from SC Child and Adult Protective Services between January 2014 and June 2018. Monthly APS data were subjected to ARIMA modeling adjusting for the time period when intake hubs were implemented. The coefficient of determination, normalized SBC, AIC, MSE, and Ljung-Box Q-test were used to evaluate the goodness-of-fit of constructed models. The most parsimonious model was selected to predict the monthly APS intakes from July to December 2018. Poisson regression was fit to examine the association of the implementation of the hubs and the number of intake reports received to APS, adjusting for confounders.ResultsOver 24,000 APS intakes accepted for investigation were identified over a period of four calendar years with an increase in the monthly average of APS intakes between 2014 and 2017. An increase in the number of monthly APS intakes was found after the intake hubs were implemented in 2015 (Phase-1) and 2017 (Phase-2). Of all the models tested, an ARIMA (12), 1, 1 model was found to work best after evaluating all fit measures for both models. For Phase-1, the optimum model predicted an average of 488 APS intake reports between July and December 2018, representing a 9% increase from January–June 2018 (median = 445). For Phase-2, the percent increase was 32%.ConclusionsThe implementation of the intake hubs has a significant impact in the number of reports received after the implementation period. ARIMA time series is a valuable tool to predict future reports of maltreatment of vulnerable adults, which could be used to allow appropriate planning and resource allocation to handle a high volume of monthly intake reports.
Highlights
Application of time series modeling to predict reports related to maltreatment of vulnerable adults can be helpful for efficient early planning and resource allocation to handle a high volume of investigations
The implementation of the intake hubs has a significant impact in the number of reports received after the implementation period
autoregressive integrated moving average (ARIMA) time series is a valuable tool to predict future reports of maltreatment of vulnerable adults, which could be used to allow appropriate planning and resource allocation to handle a high volume of monthly intake reports
Summary
Application of time series modeling to predict reports related to maltreatment of vulnerable adults can be helpful for efficient early planning and resource allocation to handle a high volume of investigations. The goal of this study is to apply: (1) autoregressive integrated moving average (ARIMA) time series modeling to fit and forecast monthly maltreatment reports accepted for assessment reported to adult protective services (APS), and (2) interrupted time series analysis to test whether the implementation of intake hubs have a significant impact in the number of maltreatment reports after the implementation period. In this study we aim: (1) to apply interrupted time series analysis to test whether the implementation of intake hubs have a significant impact in the number of maltreatment reports after the two implementation periods (Phase 1 & 2), and (2) to apply ARIMA time series modeling to fit and forecast (predict) monthly maltreatment reports accepted for assessment reported to APS in South Carolina
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.