Abstract

The interest in transient analysis of acoustic waves has been growing in recent years, due to the advance of wide-band sonars. In this paper, a transient analysis method for acoustic backscattering signals is proposed based on the time domain physical optics (TDPO). TDPO is formulated via a theoretical inverse Fourier transform of the conventional physical optics formula used in the frequency domain wave scattering analyses. A hidden surface removal algorithm using an adaptive triangular beam method and a virtual surface concept are adopted to explain shadow effects and multiple reflections among elements, respectively. Numerical analyses are carried out for two kinds of underwater targets: a submarine pressure hull and an idealized submarine, in order to validate the proposed method. The result of the submarine pressure hull shows good agreements between the proposed method and conventional physical optics based on inverse fast Fourier transform. Additionally, the result of the idealized submarine shows that the proposed method is efficient for finding highlights including their contribution to the whole backscattering signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.