Abstract

ObjectiveTimely and accurate forecast of infectious diseases is essential for achieving precise prevention and control. A good forecasting method of infectious diseases should have the advantages of interpretability, feasibility, and forecasting performance. Since previous research had illustrated that the spatial transmission network (STN) showed good interpretability and feasibility, this study further explored its forecasting performance for infectious diseases across multiple regions. Meanwhile, this study also showed whether the STN could overcome the challenges of model rationality and practical needs.MethodsThe construction of the STN framework involved three major steps: the spatial kluster analysis by tree edge removal (SKATER) algorithm, structure learning by dynamic Bayesian network (DBN), and parameter learning by the vector autoregressive moving average (VARMA) model. Then, we evaluated the forecasting performance of STN by comparing its accuracy with that of the mechanism models like susceptible-exposed-infectious-recovered-susceptible (SEIRS) and machine-learning algorithm like long-short-term memory (LSTM). At the same time, we assessed the robustness of forecasting performance of STN in high and low incidence seasons. The influenza-like illness (ILI) data in the Sichuan Province of China from 2010 to 2017 were used as an example for illustration.ResultsThe STN model revealed that ILI was likely to spread among multiple cities in Sichuan during the study period. During the whole study period, the forecasting accuracy of the STN (mean absolute percentage error [MAPE] = 31.134) was significantly better than that of the LSTM (MAPE = 41.657) and the SEIRS (MAPE = 62.039). In addition, the forecasting performance of STN was also superior to those of the other two methods in either the high incidence season (MAPE = 24.742) or the low incidence season (MAPE = 26.209), and the superiority was more obvious in the high incidence season.ConclusionThis study applied the STN to the forecast of infectious diseases across multiple regions. The results illustrated that the STN not only had good accuracy in forecasting performance but also indicated the spreading directions of infectious diseases among multiple regions to a certain extent. Therefore, the STN is a promising candidate to improve the surveillance work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.