Abstract

Capturing the physics related to the processes occurring in the two-phase flow of a direct-injection diesel engine requires a highly sophisticated modeling approach. The representative interactive flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion, and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as for the soot particle growth and oxidation, without imposing any significant computational penalty. This study addresses the part load soot underprediction of the model, which has been observed in previous investigations. By assigning flamelets, which are exposed to the walls of the combustion chamber, with heat losses calculated in a computational fluid dynamics (CFD) code, predictions of the soot emissions in a small-bore direct-injection diesel engine are substationally improved. It is concluded that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.