Abstract

We consider the aromaticity of biphenylene and structurally related linear or angular [n]phenylenes for which the direct application of the model of conjugated circuits does not offer valid expressions for resonance energy and aromaticity. We located the cause of this problem as being due to Kekulé valence structures in which neighboring benzenoid rings are connected by two CC double bonds. By restricting the selection of Kekulé valence structures to those that contribute to Clar structures of such systems, we were able to show that linear and angular [n]phenylenes have approximately similar resonance energies, with angular [n]phenylenes being slightly more stable due to second order contributions arising from disjoint conjugated circuits. Expressions for resonance energies of [n]phenylenes up to n = 8 are listed and recursion expressions for higher n values are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.