Abstract

Objective. Intensity modulated high dose rate brachytherapy (IMBT) is a rapidly developing application of brachytherapy where anisotropic dose distributions can be produced at each source dwell position. This technique is made possible by placing rotating metallic shields inside brachytherapy needles or catheters. By dynamically directing the radiation towards the tumours and away from the healthy tissues, a more conformal dose distribution can be obtained. The resulting treatment planning involves optimizing dwell position and shield angle (DPSA). The aim of this study was to investigate the column generation method for IMBT treatment plan optimization. Approach. A column generation optimization algorithm was developed to optimize the dwell times and shield angles. A retrospective study was performed on 10 prostate cases using RapidBrachyMCTPS. At every iteration, the plan was optimized with the chosen DPSA which would best improve the cost function that was added to the plan. The optimization process was stopped when the remaining DPSAs would not add value to the plan to limit the plan complexity. Main results. The average number of DPSAs and voxels were 2270 and 7997, respectively. The column generation approach yielded near-optimal treatment plans by using only 11% of available DPSAs on average in ten prostate cases. The coverage and organs at risk constraints passed in all ten cases. Significance. The column generation method produced high-quality deliverable prostate IMBT plans. The treatment plan quality reached a plateau, where adding more DPSAs had a minimal effect on dose volume histogram parameters. The iterative nature of the column generation method allows early termination of the treatment plan creation process as soon as the dosimetric indices from dose volume histogram satisfy the clinical requirements or if their values stabilize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call