Abstract

Examining the spatial relationships among crashes of various severity levels is essential for gaining a better understanding of the severity distribution and potential contributing factors to collisions. However, relatively few scholars have focused on analyzing this type of data. Therefore, in this study, we utilized a new index, the colocation quotient, to measure the spatial associations among crashes of various severities that occurred in College Station, Texas. This new method has been widely used to define the colocation pattern of categorized data in various fields, but it has not yet been applied to crash severity data. According to our findings, (1) crashes tended to be at the same injury level as those of neighboring ones, which was most significant for fatal crashes and second most significant for non-injury crashes; (2) the colocation quotient matrix tended to be symmetrical in non-injury crashes versus injury crashes (minor injury, major injury, and fatal); and, (3) DWIs (driving while intoxicated) and hit-and runs did not show a strong pattern. These colocation quotient results could be helpful for predicting crash severity and by providing traffic engineers with more effective traffic safety measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.