Abstract

Solving an acoustic wave equation using a parabolic approximation is a popular approach for many existing ocean acoustic models. Commonly used parabolic equation (PE) model programs, such as the range-dependent acoustic model (RAM), are discretized by the finite difference method (FDM). Considering the idea and theory of the wide-angle rational approximation, a discrete PE model using the Chebyshev spectral method (CSM) is derived, and the code is developed. This method is currently suitable only for range-independent waveguides. Taking three ideal fluid waveguides as examples, the correctness of using the CSM discrete PE model in solving the underwater acoustic propagation problem is verified. The test results show that compared with the RAM, the method proposed in this paper can achieve higher accuracy in computational underwater acoustics and requires fewer discrete grid points. After optimization, this method is more advantageous than the FDM in terms of speed. Thus, the CSM provides high-precision reference standards for benchmark examples of the range-independent PE model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.