Abstract

Abstract. The prediction of climate effects on terrestrial ecosystems and water resources is one of the major research questions in hydrology. Conceptual water-energy balance models can be used to gain a first order estimate of how long-term average streamflow is changing with a change in water and energy supply. A common framework for investigation of this question is based on the Budyko hypothesis, which links hydrological response to aridity. Recently, Renner et al. (2012) introduced the climate change impact hypothesis (CCUW), which is based on the assumption that the total efficiency of the catchment ecosystem to use the available water and energy for actual evapotranspiration remains constant even under climate changes. Here, we confront the climate sensitivity approaches (the Budyko approach of Roderick and Farquhar, 2011, and the CCUW) with data of more than 400 basins distributed over the continental United States. We first estimate the sensitivity of streamflow to changes in precipitation using long-term average data of the period 1949 to 2003. This provides a hydro-climatic status of the respective basins as well as their expected proportional effect to changes in climate. Next, we test the ability of both approaches to predict climate impacts on streamflow by splitting the data into two periods. We (i) analyse the long-term average changes in hydro-climatology and (ii) derive a statistical classification of potential climate and basin change impacts based on the significance of observed changes in runoff, precipitation and potential evapotranspiration. Then we (iii) use the different climate sensitivity methods to predict the change in streamflow given the observed changes in water and energy supply and (iv) evaluate the predictions by (v) using the statistical classification scheme and (vi) a conceptual approach to separate the impacts of changes in climate from basin characteristics change on streamflow. This allows us to evaluate the observed changes in streamflow as well as to assess the impact of basin changes on the validity of climate sensitivity approaches. The apparent increase of streamflow of the majority of basins in the US is dominated by an increase in precipitation. It is further evident that impacts of changes in basin characteristics appear simultaneously with climate changes. There are coherent spatial patterns with catchments where basin changes compensate for climatic changes being dominant in the western and central parts of the US. A hot spot of basin changes leading to excessive runoff is found within the US Midwest. The impact of basin changes on the prediction is large and can be twice as much as the observed change signal. Although the CCUW and the Budyko approach yield similar predictions for most basins, the data of water-limited basins support the Budyko framework rather than the CCUW approach, which is known to be invalid under limiting climatic conditions.

Highlights

  • 1.1 MotivationThe ongoing debate of environmental change has stimulated many research activities, with the central questions of how hydrological response may change under (i) climate change and (ii) under changes of the land surface

  • Our results clearly show that any process related to a change in basin characteristics may result in dynamic state transitions with impacts on evapotranspiration and streamflow, which can be larger than impacts of climatic variations

  • We test and compare the CCUW framework with the Budyko framework by employing a large hydro-climatic dataset of the continental US, covering a variety of different climatic conditions and basin characteristics, ranging from flat to mountainous basins with land cover types ranging from desert over agriculture to forested basins

Read more

Summary

Introduction

The ongoing debate of environmental change has stimulated many research activities, with the central questions of how hydrological response may change under (i) climate change and (ii) under changes of the land surface. These questions are practically of high concern, because present management plans are needed to cope with the anticipated changes. Bernhofer: Climate sensitivity of streamflow over the continental US in the future. Robust and reliable estimates of how water supplies are changing under a given future scenario are needed

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.