Abstract
Laboratory services in healthcare play a vital role in inpatient care. Studies have indicated laboratory data affect approximately 65% of the most critical decisions on admission, discharge, and medication. This research focuses on improving phlebotomist performance in laboratory facilities of large hospital systems. A two-stage stochastic integer linear programming (SILP) model is formulated to determine better weekly phlebotomist schedules and blood collection assignments. The objective of the two-stage SILP model is to balance the workload of the phlebotomists within and between shifts, as reducing workload imbalance will result in improved patient care. Due to the size of the two-stage SILP model, a scenario reduction model has been proposed as a solution approach. The scenario reduction heuristic is formulated as a linear programming model and the results indicate the scenarios with the largest likelihood of occurrence. These selected scenarios will be tested in the two-stage SILP model to determine weekly scheduling policies and blood draw assignments that will balance phlebotomist workload and improve overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.