Abstract

Robot audition by its own ears (microphones) is essential for natural human-robot communication and interface. Since a microphone is embedded in the head of a robot, the head-related transfer function (HRTF) plays an important role in sound source localization and extraction. Usually, from binaural input, the interaural phase difference (IPD) and interaural intensity difference (IID) are calculated, and then the direction is determined by using IPD and IID with HRTF. The problem of HRTF-based sound source localization is that a HRTF should be measured for each robot in an anechoic chamber, because it depends on the shape of robot's head; HRTF should be interpolated to manipulate a moving talker, because it is available only for discrete azimuth and elevation. To cope with these problems of HRTF, we proposed the auditory epipolar geometry as a continuous function of IPD and IID to dispense with HRTF and have developed a real-time multiple-talker tracking system. This auditory epipolar geometry, however, does not give a good approximation to IID of all range and IPD of peripheral areas. In this paper, the scattering theory in physics is employed to take into consideration the diffraction of sounds around robot's head for better approximation of IID and IPD. The resulting system shows that it is efficient for localization and extraction of sound at higher frequency and from side directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call