Abstract
Following the Dirichlet-type boundary condition that specifies value at boundary of a system in mathematics and physics, this study suggests applying satellite sea surface temperature (SST) as Dirichlet-type surface thermal boundary condition (STBC) in ocean models. Numerical experiments with Dirichlet-type and Combined-type STBC with different configurations of satellite SST, for the period of January to April 2019 in the Northwest Pacific Ocean, were carried out based on the Princeton Ocean Model. The experiments were assessed using satellite and in situ observations of temperature, GOFS3.1 analysis and GLORYS12v1 reanalysis. Results show that applying satellite SST as Dirichlet-type STBC could constrain the modeled SST and near-surface temperature in upper 50 m depth well, which is better than the scheme that uses satellite SST as the relaxation terms of Combined-type STBC. The temperature section along the 137°E resulted from the Dirichlet-type STBC is comparable with GOFS3.1 analysis and better than GLORYS12v1 reanalysis in upper 50 m depth. These results suggest that applying high-accuracy satellite SST as Dirichlet-type STBC in ocean models has a promising prospect in numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.