Abstract

Use of new genomic techniques in clinical settings requires that such methods are rigorous and reproducible. Previous studies have shown that quantitation of donor-derived cell-free DNA (%ddcfDNA) by unbiased shotgun sequencing is a sensitive, non-invasive marker of acute rejection after heart transplantation. The primary goal of this study was to assess the reproducibility of %ddcfDNA measurements across technical replicates, manual vs automated platforms, and rejection phenotypes in distinct patient cohorts. After developing and validating the %ddcfDNA assay, we subjected the method to a rigorous test of its reproducibility. We measured %ddcfDNA in technical replicates performed by 2 independent laboratories and verified the reproducibility of %ddcfDNA patterns of 2 rejection phenotypes: acute cellular rejection and antibody-mediated rejection in distinct patient cohorts. We observed strong concordance of technical-replicate %ddcfDNA measurements across 2 independent laboratories (slope = 1.02, R2 > 0.99, p < 10-6), as well as across manual and automated platforms (slope = 0.80, R2 = 0.92, p < 0.001). The %ddcfDNA measurements in distinct heart transplant cohorts had similar baselines and error rates. The %ddcfDNA temporal patterns associated with rejection phenotypes were similar in both patient cohorts; however, the quantity of ddcfDNA was significantly higher in samples with severe vs mild histologic rejection grade (2.73% vs 0.14%, respectively; p < 0.001). The %ddcfDNA assay is precise and reproducible across laboratories and in samples from 2 distinct types of heart transplant rejection. These findings pave the way for larger studies to assess the clinical utility of %ddcfDNA as a marker of acute rejection after heart transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call