Abstract

Grid environments are dynamic and heterogeneous by nature, therefore requiring adaptive scheduling strategies. Reinforcement learning is an interesting and simple adaptive approach that may work well in actual grid environments. In this work, we employ reinforcement learning to classify available resources in a grid environment, giving support to two scheduling algorithms, AG and MQD. We study the makespan optimisation and load balancing. An algorithm known as RR is used for normalising purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.