Abstract

PurposeAfter chemotherapy, approximately 50% of patients with metastatic testicular germ cell tumors (GCTs) who undergo retroperitoneal lymph node dissections (RPNLDs) for residual masses have fibrosis. Radiomics uses image processing techniques to extract quantitative textures/features from regions of interest (ROIs) to train a classifier that predicts outcomes. We hypothesized that radiomics would identify patients with a high likelihood of fibrosis who may avoid RPLND.Patients and MethodsPatients with GCT who had an RPLND for nodal masses > 1 cm after first-line platinum chemotherapy were included. Preoperative contrast-enhanced axial computed tomography images of retroperitoneal ROIs were manually contoured. Radiomics features (n = 153) were used to train a radial basis function support vector machine classifier to discriminate between viable GCT/mature teratoma versus fibrosis. A nested 10-fold cross-validation protocol was used to determine classifier accuracy. Clinical variables/restricted size criteria were used to optimize the classifier.ResultsSeventy-seven patients with 102 ROIs were analyzed (GCT, 21; teratoma, 41; fibrosis, 40). The discriminative accuracy of radiomics to identify GCT/teratoma versus fibrosis was 72 ± 2.2% (area under the curve [AUC], 0.74 ± 0.028); sensitivity was 56.2 ± 15.0%, and specificity was 81.9 ± 9.0% (P = .001). No major predictive differences were identified when data were restricted by varying maximal axial diameters (AUC range, 0.58 ± 0.05 to 0.74 ± 0.03). The prediction algorithm using clinical variables alone identified an AUC of 0.76. When these variables were added to the radiomics signature, the best performing classifier was identified when axial masses were limited to diameter < 2 cm (accuracy, 88.2 ± 4.4; AUC, 0.80 ± 0.05; P = .02).ConclusionA predictive radiomics algorithm had a discriminative accuracy of 72% that improved to 88% when combined with clinical predictors. Additional independent validation is required to assess whether radiomics allows patients with a high predicted likelihood of fibrosis to avoid RPLND.

Highlights

  • Multimodal treatment has dramatically increased the likelihood of cure in metastatic germ cell tumor (GCT), and the reduction of treatment morbidity is an important survivorship imperative

  • The discriminative accuracy of radiomics to identify GCT/teratoma versus fibrosis was 72 ± 2.2%; sensitivity was 56.2 ± 15.0%, and specificity was 81.9 ± 9.0% (P = .001)

  • The prediction algorithm using clinical variables alone identified an area under the curve (AUC) of 0.76. When these variables were added to the radiomics signature, the best performing classifier was identified when axial masses were limited to diameter < 2 cm

Read more

Summary

Patients and Methods

Patients with GCT who had an RPLND for nodal masses > 1 cm after first-line platinum chemotherapy were included. Preoperative contrast-enhanced axial computed tomography images of retroperitoneal ROIs were manually contoured. Radiomics features (n = 153) were used to train a radial basis function support vector machine classifier to discriminate between viable GCT/mature teratoma versus fibrosis. A nested 10-fold cross-validation protocol was used to determine classifier accuracy. Clinical variables/restricted size criteria were used to optimize the classifier

Results
Conclusion
INTRODUCTION
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call