Abstract
In recent years, Physics-Informed Neural Networks (PINNs) have drawn great interest among researchers as a tool to solve computational physics problems. Unlike conventional neural networks, which are black-box models that “blindly” establish a correlation between input and output variables using a large quantity of labeled data, PINNs directly embed physical laws (primarily partial differential equations) within the loss function of neural networks. By minimizing the loss function, this approach allows the output variables to automatically satisfy physical equations without the need for labeled data. The Navier–Stokes equation is one of the most classic governing equations in thermal fluid engineering. This study constructs a PINN to solve the Navier–Stokes equations for a 2D incompressible laminar flow problem. Flows passing around a 2D circular particle are chosen as the benchmark case, and an elliptical particle is also examined to enrich the research. The velocity and pressure fields are predicted by the PINNs, and the results are compared with those derived from Computational Fluid Dynamics (CFD). Additionally, the particle drag force coefficient is calculated to quantify the discrepancy in the results of the PINNs as compared to CFD outcomes. The drag coefficient maintained an error within 10% across all test scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.