Abstract

Measles is a highly transmissible disease and is one of the leading causes of death among young children under 5 globally. While the use of ongoing surveillance data and—recently—dynamic models offer insight on measles dynamics, both suffer notable shortcomings when applied to measles outbreak prediction. In this paper, we apply the Sequential Monte Carlo approach of particle filtering, incorporating reported measles incidence for Saskatchewan during the pre-vaccination era, using an adaptation of a previously contributed measles compartmental model. To secure further insight, we also perform particle filtering on an age structured adaptation of the model in which the population is divided into two interacting age groups—children and adults. The results indicate that, when used with a suitable dynamic model, particle filtering can offer high predictive capacity for measles dynamics and outbreak occurrence in a low vaccination context. We have investigated five particle filtering models in this project. Based on the most competitive model as evaluated by predictive accuracy, we have performed prediction and outbreak classification analysis. The prediction results demonstrate that this model could predict measles outbreak evolution and classify whether there will be an outbreak or not in the next month (Area under the ROC Curve of 0.89). We conclude that anticipating the outbreak dynamics of measles in low vaccination regions by applying particle filtering with simple measles transmission models, and incorporating time series of reported case counts, is a valuable technique to assist public health authorities in estimating risk and magnitude of measles outbreaks. It is to be emphasized that particle filtering supports estimation of (via sampling from) the entire state of the dynamic model—both latent and observable—for each point in time. Such approach offers a particularly strong value proposition for other pathogens with little-known dynamics, critical latent drivers, and in the context of the growing number of high-velocity electronic data sources. Strong additional benefits are also likely to be realized from extending the application of this technique to highly vaccinated populations.

Highlights

  • Measles is a highly contagious viral disease

  • Particle filtering is a modern methodology that fits into the broader “statistical filtering” tradition that, as time passes, combines estimates generated by a dynamic model with arriving empirical observations

  • In this paper we present a new method for tracking the epidemic pattern of measles in low vaccination regions by applying particle filtering with simple measles transmission models, and incorporating noisy monitored data

Read more

Summary

Introduction

Measles is a highly contagious viral disease It remains one of the leading causes of death among young children globally, and has imposed a significant morbidity and mortality burden where vaccination coverage is low [1]. A particle’s weight at the current time represents an approximation to the probability of the state represented by that particle obtaining at that time. This weight is, in turn, determined by the consistency of the state being hypothesized by that particle with the observations, as quantified by a likelihood function specifying the likelihood of making a given observation in light of the state captured by the particle

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.