Abstract

Time–cost optimization (TCO) is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Although the TCO problem has been extensively examined, many research studies only focused on minimizing the total cost for an early completion. This does not necessarily convey any reward to the contractor. However, with the increasing popularity of alternative project delivery systems, clients and contractors are more concerned about the combined benefits and opportunities of early completion as well as cost savings. In this paper, a genetic algorithms ( GAs ) -driven multiobjective model for TCO is proposed. The model integrates the adaptive weight to balance the priority of each objective according to the performance of the previous “generation.” In addition, the model incorporates Pareto ranking as a selection criterion and the niche formation techniques to improve popularity diversity. Based on the pr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.