Abstract

For time-delay systems with mismatched disturbances and uncertainties, this paper develops an integral sliding mode control algorithm using output information only to stabilize the systems. An integral sliding surface is comprised of output signals and an auxiliary full-order compensator. The proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. When two specific algebraic Ricca- ti inequalities have solutions, our method can guarantee the stability of the closed-loop system and sa- tisfy the property of robust disturbance attenuation. Moreover, the design parameters of controller and compensator can be simultaneously determined by solutions to the algebraic Riccati inequalities. Final- ly, two numerical examples illustrate the applicability of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.