Abstract
The paper considers the issue of recurrent neural networks applicability for detecting industrial process anomalies to detect intrusion in Industrial Control Systems. Cyberattack on Industrial Control Systems often leads to appearing of anomalies in industrial process. Thus, it is proposed to detect such anomalies by forecasting the state of an industrial process using a recurrent neural network and comparing the predicted state with actual process' state. In the course of experimental research, a recurrent neural network with one-dimensional convolutional layer was implemented. The Secure Water Treatment dataset was used to train model and assess its quality. The obtained results indicate the possibility of using the proposed method in practice. The proposed method is characterized by the absence of the need to use anomaly data for training. Also, the method has significant interpretability and allows to localize an anomaly by pointing to a sensor or actuator whose signal does not match the model's prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.