Abstract

This paper employs the continuous-time analogue Hopfield neural network to compute the temperature distribution in forward heat conduction problems and solves inverse heat conduction problems by using a back propagation neural (BPN) network to identify the unknown boundary conditions. The weak generalization capacity of BPN networks is improved by employing the Bayesian regularization algorithm. The feasibility of the proposed method is examined in a series of numerical simulations. The results show that the proposed neural network analysis method successfully solves forward heat conduction problems and is capable of predicting the unknown parameters in inverse problems with an acceptable error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.