Abstract
Nearest neighborhood consistency is an important concept in statistical pattern recognition, which underlies the well-known k-nearest neighbor method. In this paper, we combine this idea with kernel density estimation based clustering, and derive the fast mean shift algorithm (FMS). FMS greatly reduces the complexity of feature space analysis, resulting satisfactory precision of classification. More importantly, we show that with FMS algorithm, we are in fact relying on a conceptually novel approach of density estimation, the fast kernel density estimation (FKDE) for clustering. The FKDE combines smooth and non-smooth estimators and thus inherits advantages from both. Asymptotic analysis reveals the approximation of the FKDE to standard kernel density estimator. Data clustering and image segmentation experiments demonstrate the efficiency of FMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.