Abstract
Worsening heart failure (WHF) events occurring in non-inpatient settings are becoming increasingly recognized, with implications for prognostication. We evaluate the performance of a natural language processing (NLP)-based approach compared with traditional diagnostic coding for non-inpatient clinical encounters and left ventricular ejection fraction (LVEF). We compared characteristics for encounters that did vs. did not meet WHF criteria, stratified by care setting [i.e. emergency department (ED) and observation stay]. Overall, 8407 (22%) encounters met NLP-based criteria for WHF (3909 ED visits and 4498 observation stays). The use of an NLP-derived definition adjudicated 3983 (12%) of non-primary HF diagnoses as meeting consensus definitions for WHF. The most common diagnosis indicated in these encounters was dyspnoea. Results were primarily driven by observation stays, in which 2205 (23%) encounters with a secondary HF diagnosis met the WHF definition by NLP. The use of standard claims-based adjudication for primary diagnosis in the non-inpatient setting may lead to misclassification of WHF events in the ED and overestimate observation stays. Primary diagnoses alone may underestimate the burden of WHF in non-hospitalized settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.