Abstract

Automated program generation (APG) is a concept of automatically making a computer program. Toward this goal, transferring automated program repair (APR) to APG can be considered. APR modifies the buggy input source code to pass all test cases. APG regards empty source code as initially failing all test cases, i.e., containing multiple bugs. Search-based APR repeatedly generates program variants and evaluates them. Many traditional APR systems evaluate the fitness of variants based on the number of passing test cases. However, when source code contains multiple bugs, this fitness function lacks the expressive power of variants. In this paper, we propose the application of a multi-objective genetic algorithm to APR in order to improve efficiency. We also propose a new crossover method that combines two variants with complementary test results, taking advantage of the high expressive power of multi-objective genetic algorithms for evaluation. We tested the effectiveness of the proposed method on competitive programming tasks. The obtained results showed significant differences in the number of successful trials and the required generation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.