Abstract
Using biogas slurry to cultivate microalgae can simultaneously obtain microalgal biomass and allow nutrient recovery. Mixotrophic microalgae are widely recognized for their high biomass accumulation and low light dependence, making it possible to overcome the drawbacks of photoautotrophy. In this study, three complete metabolic modes of photoautotrophy, heterotrophy, mixotrophy and two incomplete metabolic modes with the addition of diuron and rotenone were applied to investigate Chlorella pyrenoidosa growth in biogas slurry. The results showed that the mixotrophic group obtained 1.15 g/L biomass, 30 % starch content, 99.40 % ammonium removal and 81.69 % total phosphorus removal, which were highly promoted compared to the others. The decline in chlorophyll, the simultaneous downregulation of Rubisco and citrate synthase and the increase in the actual quantum yield of PSII under mixotrophy revealed a synergistic effect: the complementation of photophosphorylation and oxidative phosphorylation greatly contributed to maximizing energy metabolism efficiency and minimizing energy dissipation loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.