Abstract

обработка информации в настоящее время является одной из наиболее актуальных задач. С ростом и развитием информационных и телекоммуникационных технологий выросли и объемы передаваемой информации по сети Интернет. одновременно с обработкой информации встает вопрос ее защиты. Предложен подход к построению распределенной вычислительной системы, осуществляющей обработку снимков сетевого трафика за приемлемое время и обеспечивающей близкий к линейному рост производительности при наращивании вычислительных мощностей. АНАлИЗ СеТеВоГо ТРАФИКА; больШИе дАННые; MAPREDUCE; HADOOP. Nowadays information security is an important issue. Network traffic analysis is widely used by Internet Service Providers to evaluate network performance, to collect statistics and to detect vulnerabilities. To analyze traffic traces collected from a large network it is required a computer system where both storage and computing resources can be easily scaled out to handle and process multi-Terabyte files. Cloud computing platforms and cluster file systems could provide resizable compute and storage capacity. The MapReduce programming model developed by Google in 2004 allows processing huge amounts of data in distributed manner by defining the map and reduce functions. The given paper proposes a cloud-computing framework based on a MapReduce approach for fast internet traffic analytics. DEEP PACKET INSPECTION; BIGDATA; MAPREDUCE; HADOOP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.