Abstract

PremiseDespite the economic significance of insect damage to plants (i.e., herbivory), long‐term data documenting changes in herbivory are limited. Millions of pressed plant specimens are now available online and can be used to collect big data on plant–insect interactions during the Anthropocene.MethodsWe initiated development of machine learning methods to automate extraction of herbivory data from herbarium specimens by training an insect damage detector and a damage type classifier on two distantly related plant species (Quercus bicolor and Onoclea sensibilis). We experimented with (1) classifying six types of herbivory and two control categories of undamaged leaf, and (2) detecting two of the damage categories for which several hundred annotations were available.ResultsDamage detection results were mixed, with a mean average precision of 45% in the simultaneous detection and classification of two types of damage. However, damage classification on hand‐drawn boxes identified the correct type of herbivory 81.5% of the time in eight categories. The damage classifier was accurate for categories with 100 or more test samples.DiscussionThese tools are a promising first step for the automation of herbivory data collection. We describe ongoing efforts to increase the accuracy of these models, allowing researchers to extract similar data and apply them to biological hypotheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.