Abstract

Machine vision systems use industrial cameras’ digital sensors to collect images and use computers for image pre-processing, analysis, and the measurements of various features to make decisions. With increasing capacity and quality demands in the electronic industry, incoming quality control (IQC) standards are becoming more and more stringent. The industry’s incoming quality control is mainly based on manual sampling. Although it saves time and costs, the miss rate is still high. This study aimed to establish an automatic defect detection system that could quickly identify defects in the gold finger on printed circuit boards (PCBs) according to the manufacturer’s standard. In the general training iteration process of deep learning, parameters required for image processing and deductive reasoning operations are automatically updated. In this study, we discussed and compared the object detection networks of the YOLOv3 (You Only Look Once, Version 3) and Faster Region-Based Convolutional Neural Network (Faster R-CNN) algorithms. The results showed that the defect classification detection model, established based on the YOLOv3 network architecture, could identify defects with an accuracy of 95%. Therefore, the IQC sampling inspection was changed to a full inspection, and the surface mount technology (SMT) full inspection station was canceled to reduce the need for inspection personnel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.