Abstract
To understand students' learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students' learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programming system logs, found that students' learning characteristics were correlated with their learning performance when they encountered similar programming practice. In this study, we used random forest (RF), support vector machine (SVM), logistic regression (LR), and neural network (NN) algorithms to predict whether students would submit on time for the course. Among them, the NN algorithm showed the best prediction results. Education-related data can be predicted by machine learning techniques, and different machine learning models with different hyperparameters can be used to obtain better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.