Abstract

Air quality forecasting is very difficult to achieve in metropolitan areas due to: pollutants emission dynamics, high population density and uncertainty in defining meteorological conditions. The use of data, which contain insufficient information within the model training, and the poor selection of the model to be used limits the air quality prediction accuracy. In this study, the prediction of NO2 concentration is made for the year 2022 using a long short-term memory network (LSTM) and a gated recurrent unit (GRU). this is an improvement in terms of performance compared to traditional methods. Data used for predictive modeling are obtained from the National Air Quality Monitoring Network. The KPIs(key performance indicator) are computed based on the testing data subset when the NO2 predicted values are compared to the real known values. Further, two additional predictions were performed for two days outside the modeling dataset. The quality of the data is not as expected, and so, before building the models, the missing data had to be imputed. LSTM and GRU performance in predicting NO2 levels is similar and reasonable with respect to the case study. In terms of pure generalization capabilities, both LSTM and GRU have the maximum R2 value below 0.8. LSTM and GRU represent powerful architectures for time-series prediction. Both are highly configurable, so the probability of identifying the best suited solution for the studied problem is consequently high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.