Abstract

Continuous unfractionated heparin is widely used in intensive care, yet its complex pharmacokinetic properties complicate the determination of appropriate doses. To address this challenge, we developed machine learning models to predict over- and under-dosing, based on anti-Xa results, using a monocentric retrospective dataset. The random forest model achieved a mean AUROC of 0.80 [0.77-0.83], while the XGB model reached a mean AUROC of 0.80 [0.76-0.83]. Feature importance was employed to enhance the interpretability of the model, a critical factor for clinician acceptance. After prospective validation, machine learning models such as those developed in this study could be implemented within a computerized physician order entry (CPOE) as a clinical decision support system (CDSS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.