Abstract

This paper describes an application of the logic programming paradigm to large-scale comparison of complete microbial genomes each containing four-million amino acid characters and approximately two thousand genes. We present algorithms and a Sicstus Prolog based implementation to model genome comparisons as bipartite graph matching to identify orthologs — genes across different genomes with the same function — and groups of orthologous genes — orthologous genes in close proximity, and gene duplications. The application is modular, and integrates logic programming with Unix-based programming and a Prolog based text-processing library developed during this project. The scheme has been successfully applied to compare eukaryotes such as yeast. The data generated by the software is being used by microbiologists and computational biologists to understand the regulation mechanisms and the metabolic pathways in microbial genomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.