Abstract
Memory-based Collaborative Filtering (CF) has been a widely used approach for personalised recommendation with considerable success in many applications. An important issue regarding memory-based CF lies in similarity computation: the sparsity of the rating matrix leads to similarity computations based on few co-rated items between users, resulting in high sensitive predictions. Additionally, the ‘sparse’ similarity computation has high computational cost, due to the dimensionality of the item space. In this paper, we pursue both these issues. We propose a new model to compute similarity by representing users (or items) through their distances to preselected users, named landmarks. Such user modelling allows the introduction of more ratings into similarity computations through transitive relations created by the landmarks. Unlike conventional memory-based CF, the proposal builds a new user space defined by distances to landmarks, avoiding sensitivity in similarity computations. Findings from our experiments show that the proposed modelling achieves better accuracy than the ‘sparse’ similarity representation in all tested datasets, and has also yielded competitive accuracy results against the compared model-based CF algorithms. Furthermore, the proposed implementation has beaten all compared methods in terms of computational performance, becoming a promising alternative to memory-based CF algorithms for large datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.