Abstract
Objective:The association of occupational noise-induced hearing loss (NIHL) with noise energy was well documented, but the relationship between occupational noise and noise temporal structure is rarely reported. The objective of this study was to investigate the principal characteristics of the relationship between occupational NIHL and the temporal structure of noise.Methods:Audiometric and shift-long noise exposure data were collected from 3102 Chinese manufacturing workers from six typical industries through a cross-sectional survey. In data analysis, A-weighted 8-h equivalent SPL (LAeq.8h), peak SPL, and cumulative noise exposure (CNE) were used as noise energy indicators, while kurtosis (β) was used as the indicator of noise temporal structure. Two NIHL were defined: (1) high-frequency noise-induced hearing loss (HFNIHL) and (2) noise-induced permanent threshold shift at test frequencies of 3, 4, and 6 kHz (noise-induced permanent threshold shift [NIPTS346]). The noise characteristics of different types of work and the relationship between these characteristics and the prevalence of NIHL were analyzed.Results:The noise waveform shape, with a specific noise kurtosis, was unique to each type of work. Approximately 27.92% of manufacturing workers suffered from HFNIHL, with a mean NIPTS346 of 24.16 ± 14.13 dB HL. The Spearman correlation analysis showed that the kurtosis value was significantly correlated with the difference of peak SPL minus its LAeq.8h across different types of work (p < 0.01). For a kurtosis-adjusted CNE, the linear regression equation between HFNIHL% and CNE for complex noise almost overlapped with Gaussian noise. Binary logistic regression analysis showed that LAeq.8h, kurtosis, and exposure duration were the key factors influencing HFNIHL% (p < 0.01). The notching extent in NIPTS at 4 kHz became deeper with the increase in LAeq.8h and kurtosis. HFNIHL% increased most rapidly during the first 10 years of exposure. HFNIHL% with β ≥ 10 was significantly higher than that with β < 10 (p < 0.05), and it increased with increasing kurtosis across different CNE or LAeq.8h levels. When LAeq.8h was 80 to 85 dB(A), the HFNIHL% at β ≥ 100 was significantly higher than that at 10 ≤ β < 100 or β < 10 (p < 0.05 and p < 0.01, respectively).Conclusions:In the evaluation of hearing loss caused by complex noise, not only noise energy but also the temporal structure of noise must be considered. Kurtosis of noise is an indirect metric that is sensitive to the presence of impulsive components in complex noise exposure, and thus, it could be useful for quantifying the risk for NIHL. It is necessary to re-evaluate the safety of permissible exposure limit of 85 dB(A) as noise with a high kurtosis value can aggravate or accelerate early NIHL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.