Abstract

Abstract In this paper we apply ideas from information theory to create a method for the design of optimal filters for photometric redshift estimation. We show the method applied to a series of simple example filters in order to motivate an intuition for how photometric redshift estimators respond to the properties of photometric passbands. We then design a realistic set of six filters covering optical wavelengths that optimize photometric redshifts for z <= 2.3 and i < 25.3. We create a simulated catalog for these optimal filters and use our filters with a photometric redshift estimation code to show that we can improve the standard deviation of the photometric redshift error by 7.1% overall and improve outliers 9.9% over the standard filters proposed for the Large Synoptic Survey Telescope (LSST). We compare features of our optimal filters to the LSST and find that the LSST filters incorporate key features for optimal photometric redshift estimation. Finally, we describe how information theory can be applied to a range of optimization problems in astronomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.