Abstract

In-situ radiographic aluminum welding experiments were set up to observe the porosity formation and movement in aluminum weld pools. Aluminum Alloys 1100, 4047, and 6061 were autogenously gas tungsten arc welded while digitally recording radiograph images of macropores. Hydrogen was added in controlled parts per million through an argon-hydrogen shielding gas. The shielding gas hydrogen varied between 0 and 1000 parts per million of hydrogen, and three travel speeds were tested: 1.69, 2.54, and 3.39 mm/s. The transfer of hydrogen from the arc plasma to the weld pool was characterized using postweld gravimetric measurements to get the total pore volume and calculate weld metal hydrogen content. The amount of hydrogen added through the shielding gas played an important role in macropore volume and growth rate. Welding travel speed likewise played a critical role in hydrogen pickup. Alloy 1100 macropores originated at the bottom of the weld pool and then migrated upward toward the rear of the pool. Macropores in Alloys 4047 and 6061 originated at the leading edge of the weld pool and then moved downward and toward the rear of the pool. It is hypothesized that this difference in behavior is related to Marangoni-controlled fluid flow in Alloys 4047 and 6061.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call