Abstract

Chemical probes are invaluable tools for investigating essential biological processes. Understanding how small-molecule probes engage biomolecular conformations is critical to developing their functional selectivity. High-throughput solution X-ray scattering is well-positioned to profile target-ligand complexes during probe development, bringing conformational insight and selection to traditional ligand binding assays. Access to high-quality synchrotron SAXS datasets and high-throughput data analysis now allows routine academic users to incorporate conformational information into small-molecule development pipelines. Here we describe a general approach for benchmarking and preparing HT-SAXS chemical screens from small fragment libraries. Using the allosteric oxidoreductase Apoptosis-Inducing Factor (AIF) as an exemplary system, we illustrate how HT-SAXS efficiently identifies an allosteric candidate among hits of a microscale thermophoresis ligand screen. We discuss considerations for pursuing HT-SAXS chemical screening with other systems of interest and reflect on advances to extend screening throughput and sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call