Abstract
The recommender systems are widely used in online applications to suggest products to the potential users. The main aim of recommender system is to produce meaningful recommendation to a potential user by monitoring user’s purchasing habits, history, and useful information. Recently, graph representation learning methods based on node embedding have drawn attention in Recommender systems such as Graph Convolutional Networks (GCNs) that is powerful method for collaborative filtering. The GCN performs neighborhood aggregation mechanism to extract high level representation for both user and items. In this paper, we propose a recommendation algorithm based on node similarity convolutional matrices with topological property in GCNs where the linkage measure is illustrated as a bipartite graph. The experiments indicate the necessity of capturing user–item graph structure in recommendation. The experimental results show that node similarity-based convolution matrices and GCN-based embeddings significantly improve the prediction accuracy in recommender systems compared to state-of-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.