Abstract
Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality training data and high false-positive rates. Generative Machine Learning Models (GMLMs) can help overcome these challenges. This article offers an in-depth exploration of GMLMs’ application to intrusion detection. It gives (1) a systematic mapping study of research at the intersection of GMLMs and IDSs, and (2) a detailed review providing insights and directions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.