Abstract

Generative Artificial Intelligence has made significant impacts in many fields, including computational cognitive modeling of decision making, although these applications have not yet been theoretically related to each other. This work introduces a categorization of applications of Generative Artificial Intelligence to cognitive models of decision making. This categorization is used to compare the existing literature and to provide insight into the design of an ablation study to evaluate our proposed model in three experimental paradigms. These experiments used for model comparison involve modeling human learning and decision making based on both visual information and natural language, in tasks that vary in realism and complexity. This comparison of applications takes as its basis Instance-Based Learning Theory, a theory of experiential decision making from which many models have emerged and been applied to a variety of domains and applications. The best performing model from the ablation we performed used a generative model to both create memory representations as well as predict participant actions. The results of this comparison demonstrates the importance of generative models in both forming memories and predicting actions in decision-modeling research. In this work, we present a model that integrates generative and cognitive models, using a variety of stimuli, applications, and training methods. These results can provide guidelines for cognitive modelers and decision making researchers interested in integrating Generative AI into their methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call