Abstract

The flattop (uniform) and other intensity distributions of a laser beam are frequently considered as techniques to improve performance of laser technologies in manufacturing of solar cells. This task of creating these beam profiles can be easily solved with using beam shaping optics, for example, the field mapping refractive beam shapers like piShaper. The operation principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with saving beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, capability to work with galvo-mirror scanning optics. The flattop, inverse Gauss, super Gauss, donut and other intensity distributions can be provided for the laser spots which size spans from microns to millimetres and centimetres; this makes these devices a powerful tool to improve the laser technologies like patterning, scribing, drilling, edge isolation, firing contacts, etc. This paper will describe some design basics of refractive beam shapers π Shaper and optical layouts of their applying in various technologies for solar cell manufacturing. Examples of real implementations and experimental results will be presented as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call