Abstract
Extended phase-space explicit symplectic-like integrators were recently developed for nonseparable Hamiltonian systems. Following this idea, we establish numerical integration codes about the explicit symplectic-like algorithms for nonconservative nonseparable problems with velocity-dependent interaction forces, such as a damped harmonic oscillator and the orbital motion of a dust particle experiencing Poynting-Robertson drag. We use integral invariant relations of these nonconservative energies as accuracy checks in numerical integrations. It is found that these explicit symplectic-like methods still make the energy errors remain bounded in the nonconservative case. It is shown that the explicit symplectic-like integrators with the midpoint permutations are superior to those with the sequence two permutations of momenta and coordinates in the numerical accuracy although the latter algorithm is efficiently applicable to these dissipative systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.