Abstract

Recent ARPES measurements [Phys. Rev. B 92, 041113 (2015)] have confirmed the one-dimensional character of the electronic structure of CeO0.5F0.5BiS2, a representative of BiS2-based superconductors. In addition, several members of this family present sizable increase in the superconducting transition temperature Tc under application of hydrostatic pressure. Motivated by these two results, we propose a one-dimensional three-orbital model, whose kinetic energy part, obtained through ab initio calculations, is supplemented by pair-scattering terms, which are treated at the mean-field level. We solve the gap equations self-consistently and then systematically probe which combination of pair-scattering terms gives results consistent with experiment, namely, a superconducting dome with a maximum Tc at the right chemical potential and a sizable increase in Tc when the magnitude of the hoppings is increased. For these constraints to be satisfied multi-gap superconductivity is required, in agreement with experiments, and one of the hoppings has a dominant influence over the increase of Tc with pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.