Abstract
This paper addresses the solution of the Medium-Term Operation Planning (MTOP) problem. This operation scheduling problem aims to define the output of each power plant to minimize the expected production cost over a medium-term planning horizon. In hydrothermal systems, the MTOP is strongly influenced by the amount of water inflow to the reservoirs of hydroelectric plants, which is uncertain. Thus, the System Operator (SO) must consider these uncertainties in the problem resolution, which can be solved by means of Stochastic Programming (SP) techniques, such as the Progressive Hedging (PH) proposed in this paper. This paper presents suitable decomposition schemes to reduce the CPU time, such that it is possible to use a detailed model for the problem. Additionally, a parallel computational approach based on the PH algorithm is also implemented. To demonstrate the efficiency of the proposed schemes, a large hydrothermal system is investigated in the case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.