Abstract

Generating and recognizing facial expressions has numerous applications, however, those are limited by the scarcity of datasets containing labeled nuanced expressions. In this paper, we describe the use of Delaunay triangulation combined with simple morphing techniques to blend images of faces, which allows us to create and automatically label facial expressions portraying controllable intensities of emotion. We have applied this approach on the RafD dataset consisting of 67 participants and 8 categorical emotions and evaluated the augmentation in a facial expression generation and recognition tasks using deep learning models. For the generation task, we used a deconvolution neural network which learns to encode the input images in a high-dimensional feature space and generate realistic expressions at varying intensities. The augmentation significantly improves the quality of images compared to previous comparable experiments and it allows to create images with a higher resolution. For the recognition task, we evaluated pre-trained Densenet121 and Resnet50 networks with either the original or augmented dataset. Our results indicate that the augmentation alone has a similar or better performance compared to the original. Implications of this method and its role in improving existing facial expression generation and recognition approaches are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.