Abstract
Mass transfer of ozone within the inner structure of a catalyst and utilization efficiency of the photo-generated electrons are two decisive factors governing the production of hydroxyl radicals (•OH) in photocatalytic ozonation process from kinetic and thermodynamic perspectives, respectively. For achieving precise dual-control, defect-engineered tungsten oxide with a periodic porous architecture (p-WO3-OV) is synthesized. Compared with pristine WO3, p-WO3-OV achieves a 7.6-fold increase in the reaction rate of solar photocatalytic ozonation, accompanied by a 2.3-fold enhancement in the ozone utilization efficiency. The constructed periodic porous structure shortens the migration path of charge carriers and promotes the fluidity of the reactants. The rich oxygen vacancies in WO3 enhance the generation of charge carriers and promote O3 interactions. This work provides mechanistic insights into both the kinetic boost endowed by porous nanoarchitecture, and the thermodynamic modulation enabled by defect engineering to achieve the synergy in solar-driven photocatalytic ozonation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.