Abstract

This paper proposes the back-propagation neural network (BPN) and applies it to estimate the slump of high-performance concrete (HPC). It is known that HPC is a highly complex material whose behaviour is difficult to model, especially for slump. To estimate the slump, it is a nonlinear function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, and coarse and fine aggregate. Therefore, slump estimation is set as a function of the content of these seven concrete ingredients and additional four important ratios. The results show that BPN obtains a more accurate mathematical equation through learning procedures which outperforms the traditional multiple linear regression analysis (RA), with lower estimating errors for predicting the HPC slump.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call