Abstract

In this paper, we propose a new methodology to embed deep learning-based algorithms in both visual recognition and motion planning for general mobile robotic platforms. A framework for an asynchronous deep classification network is introduced to integrate heavy deep classification networks into a mobile robot with no loss of system bandwidth. Moreover, a gaming reinforcement learning-based motion planner, a novel and convenient embodiment of reinforcement learning, is introduced for simple implementation and high applicability. The proposed approaches are implemented and evaluated on a developed robot, TT2-bot. The evaluation was based on a mission devised for a qualitative evaluation of the general purposes and performances of a mobile robotic platform. The robot was required to recognize targets with a deep classifier and plan the path effectively using a deep motion planner. As a result, the robot verified that the proposed approaches successfully integrate deep learning technologies on the stand-alone mobile robot. The embedded neural networks for recognition and path planning were critical components for the robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.